Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification and characterization of nuclear genes involved in photosynthesis in Populus.

Identifieur interne : 002181 ( Main/Exploration ); précédent : 002180; suivant : 002182

Identification and characterization of nuclear genes involved in photosynthesis in Populus.

Auteurs : Bowen Wang ; Qingzhang Du ; Xiaohui Yang ; Deqiang Zhang [République populaire de Chine]

Source :

RBID : pubmed:24673936

Descripteurs français

English descriptors

Abstract

BACKGROUND

The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis.

RESULTS

Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions.

CONCLUSIONS

This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.


DOI: 10.1186/1471-2229-14-81
PubMed: 24673936
PubMed Central: PMC3986721


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification and characterization of nuclear genes involved in photosynthesis in Populus.</title>
<author>
<name sortKey="Wang, Bowen" sort="Wang, Bowen" uniqKey="Wang B" first="Bowen" last="Wang">Bowen Wang</name>
</author>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Yang, Xiaohui" sort="Yang, Xiaohui" uniqKey="Yang X" first="Xiaohui" last="Yang">Xiaohui Yang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P, R, China. DeqiangZhang@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P, R</wicri:regionArea>
<wicri:noRegion>R</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24673936</idno>
<idno type="pmid">24673936</idno>
<idno type="doi">10.1186/1471-2229-14-81</idno>
<idno type="pmc">PMC3986721</idno>
<idno type="wicri:Area/Main/Corpus">002254</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002254</idno>
<idno type="wicri:Area/Main/Curation">002254</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002254</idno>
<idno type="wicri:Area/Main/Exploration">002254</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification and characterization of nuclear genes involved in photosynthesis in Populus.</title>
<author>
<name sortKey="Wang, Bowen" sort="Wang, Bowen" uniqKey="Wang B" first="Bowen" last="Wang">Bowen Wang</name>
</author>
<author>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
</author>
<author>
<name sortKey="Yang, Xiaohui" sort="Yang, Xiaohui" uniqKey="Yang X" first="Xiaohui" last="Yang">Xiaohui Yang</name>
</author>
<author>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P, R, China. DeqiangZhang@bjfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P, R</wicri:regionArea>
<wicri:noRegion>R</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Analysis of Variance (MeSH)</term>
<term>Cell Nucleus (genetics)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Down-Regulation (genetics)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Gene Regulatory Networks (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genetic Loci (MeSH)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Photosynthesis (genetics)</term>
<term>Polymorphism, Single Nucleotide (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Reproducibility of Results (MeSH)</term>
<term>Stress, Physiological (genetics)</term>
<term>Up-Regulation (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Analyse de variance (MeSH)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Gene Ontology (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Locus génétiques (MeSH)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Photosynthèse (génétique)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (génétique)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Reproductibilité des résultats (MeSH)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Régulation négative (génétique)</term>
<term>Régulation positive (génétique)</term>
<term>Réseaux de régulation génique (MeSH)</term>
<term>Stress physiologique (génétique)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Nucleus</term>
<term>Down-Regulation</term>
<term>Photosynthesis</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Populus</term>
<term>Stress, Physiological</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Noyau de la cellule</term>
<term>Photosynthèse</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Populus</term>
<term>Régulation négative</term>
<term>Régulation positive</term>
<term>Stress physiologique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Analysis of Variance</term>
<term>Cluster Analysis</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Gene Ontology</term>
<term>Gene Regulatory Networks</term>
<term>Genes, Plant</term>
<term>Genetic Loci</term>
<term>Hybridization, Genetic</term>
<term>Molecular Sequence Annotation</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Phenotype</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Reproducibility of Results</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de regroupements</term>
<term>Analyse de variance</term>
<term>Annotation de séquence moléculaire</term>
<term>Gene Ontology</term>
<term>Gènes de plante</term>
<term>Hybridation génétique</term>
<term>Locus génétiques</term>
<term>Phénotype</term>
<term>Reproductibilité des résultats</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Réseaux de régulation génique</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24673936</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Mar</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification and characterization of nuclear genes involved in photosynthesis in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>81</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2229-14-81</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P < 0.05), 163 up-regulated and 352 down-regulated. Real-time PCR expression analysis confirmed the microarray data. Singular Enrichment Analysis identified 48 significantly enriched GO terms for molecular functions (28), biological processes (18) and cell components (2). Furthermore, we selected six candidate genes for functional examination by a single-marker association approach, which demonstrated that 20 SNPs in five candidate genes significantly associated with photosynthetic traits, and the phenotypic variance explained by each SNP ranged from 2.3% to 12.6%. This revealed that regulation of photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Bowen</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Du</LastName>
<ForeName>Qingzhang</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Xiaohui</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Deqiang</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P, R, China. DeqiangZhang@bjfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000704" MajorTopicYN="N">Analysis of Variance</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063990" MajorTopicYN="N">Gene Ontology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056426" MajorTopicYN="N">Genetic Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015203" MajorTopicYN="N">Reproducibility of Results</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>3</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24673936</ArticleId>
<ArticleId IdType="pii">1471-2229-14-81</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2229-14-81</ArticleId>
<ArticleId IdType="pmc">PMC3986721</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jan;125(1):29-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11154289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;181(3):532-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2006 Jan;47(1):22-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16239307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):117-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21088226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1597-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):120-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21964328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):43-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20855521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2011 Dec 15;168(18):2161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21856037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):E3360-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23940321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:675-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9828-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1682921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2006 Feb;5(2):270-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16457592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):70-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 6;433(7021):39-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15635403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):93-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jan;23(1):322-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Sep;32(9):1407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23652820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jul;9(7):325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):568-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:347-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17263663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2008 Nov;46(11):941-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18674922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):399-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21057113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jun 14;447(7146):848-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17568744</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 May;9(5):244-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15130550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2012 Jun;279(11):2022-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22458847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):49-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20940347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):108-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21075960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Feb;25(2):609-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23396830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 12;107(2):918-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20080776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):293-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 24;411(6836):466-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11373676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):56-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20940348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2010 Jun;13(3):288-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20303321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2012 Jun 18;75(11):3138-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22200676</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jan;3(1):21-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20038549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 May;42(5):462-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11382811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 May;4(3):377-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(4):551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2005 Jan 3;344:33-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15656970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 May;9(5):383-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18368053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):86-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21084435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jun 25;459(7250):1071-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):125-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jun;58(6):903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Membr Biol. 2011 Mar;240(2):89-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21347612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Mar;45(6):968-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16507087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Nov;6(11):850-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16261190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 Aug;30(8):946-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20571151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Jan;4(1):17-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20943810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2009;60:115-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2012 Sep 11;3:205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22973284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2010 Jun;76(11):3462-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1993 May;86(4):437-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24193590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Drugs. 2010;8(4):968-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20479963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Mar;138(3):346-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Feb;197(3):763-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23278184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jun;12(6):267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2001;68(1):39-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2011 Sep;52(9):1583-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21828102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18387193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Dec;160(4):1781-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23090585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Jun;9(6):1063-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20061580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):191-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Feb;33(2):223-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19906149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2007 Apr;48(4):606-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17339232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO Rep. 2003 May;4(5):491-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12776738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1378-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2011 Aug;27(8):295-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21680045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Dec;10(6):600-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17719262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):453-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19933385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:515-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21438681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 1;280(13):12168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15632145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):2258-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20190095</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Du, Qingzhang" sort="Du, Qingzhang" uniqKey="Du Q" first="Qingzhang" last="Du">Qingzhang Du</name>
<name sortKey="Wang, Bowen" sort="Wang, Bowen" uniqKey="Wang B" first="Bowen" last="Wang">Bowen Wang</name>
<name sortKey="Yang, Xiaohui" sort="Yang, Xiaohui" uniqKey="Yang X" first="Xiaohui" last="Yang">Xiaohui Yang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Deqiang" sort="Zhang, Deqiang" uniqKey="Zhang D" first="Deqiang" last="Zhang">Deqiang Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002181 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002181 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24673936
   |texte=   Identification and characterization of nuclear genes involved in photosynthesis in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24673936" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020